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PREFACE

The goal of the research reported here has been to develop a
phenomenological theory of induced birefringence which is general enough
to account for observed memory effects and non-linearities in the depen-
dence of dielectric properties on the history of deformation. The theory
we give has a mathematical structure closely related to that of Noll's
dynamical theory of "simple materials”. In that theory, a material is
characterized by a functional & which gives the stress when the history
of the strain is specified. Here, in addition to ©,we have, for each
material, a functional T which relates the dielectric properties of the
material to the history of the strain. For certain broad classes of
motions}the requirements of material symmetry and frame-indifference
greatly simplify the forms of © and M. Much of this report is concerned
with optical applications of such "reduction theorems", allof which are
obtained without invoking integral expansions or other special hypotheses
of smoothness for material response.

In conversations held in 1960 and 1961, B. D. Coleman and
R. A. Toupin [1962, 2] discussed the possikbility of developing a theory
of induced birefringence which could employ the mathematical machinery
then being developed in non-linear continuum mechanics. Sections 3, 4,
6, 10, and 2lc of this report draw heavily on unpublished notes which

Coleman wrote in the Fall of 1961 as a summary of his work with Toupin.
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The classes of motions we discuss in Chapter IV, particularly
Sections 14 and 15, are chosen as much for their practical nature as for
their mathematical simplicity. Such motions were used in the experimental
program carried out in the Department of Aeronautics and Astronautics of
the University of Washington, under Grant No. NsG-401 from the National

#

Aeronautics and Space Administration. E. H. Dill's work was supported
by that grant, while B. D. Coleman's research was partly supported by the
Air Force Office of Scientific Research through Contract AF 49(638)541 and
Grant AF 68~1538 to the Mellon Institute of Carnegie-Mellon University.

We thank Professor R. J. H. Bollard for making possible our work
under Grants NsG-401 and NGR-48-002-003 and for his encouragement.

This manuscript was typed by Mrs. Madeline K. Nasser at Mellon

Institute; we thank her for her careful work and patience.

#See Dill & Fowlkes [1966, 2] and Fowlkes [1969, 11.
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I. INTRODUCTION

1. Fresnel's Theory of Double Refraction

Rays of light generally change direction on passing from one
transparent substance into another. Such deflection of light at an
interface is called refraction. For some materials, under certain
circumstances, such as water at rest, or glass in an undistorted state,

a single incident ray gives rise to only one ray upon refraction. A ray

of light incident upon a crystal, however, is generally split into two rays
upon refraction. The two refracted rays are polarized at right angles

to each other and have different speeds of propagation. Substances in

which such splitting occurs are said to be doubly refracting or

birefringent. Many materials which are not birefringent in undistorted
states become birefringent upon deformation. In this essay we study the

theory of such induced birefringence.

The propagation of light in a birefringent body can be described
by the theory of Fresnel [1827, 1], which we here attempt to outline.#
In the theory it is assumed that light propagates in transverse harmonic

waves. One associates with each point X of the material a symmetric,

positive definite, temsor L, which we may call the Fresnel temsor. If we

choose a Cartesian coordinate system (g,n,@)’with origin at x and

axes along the proper vectors 51, k

Ky» 53 of L, then the equation,

2,2 2.2 2,2
viE® + vonT + V3C = 1, (1.1)

#A history of the subject is given by Whittaker [1951, 1].
1



with Vi the proper number of L corresponding to Ei’ describes a figure

called the Fresnel ellipsoid. The positive numbers Vs Vo, Vg are called

the principal wave speeds, and the vectors 51, 52, 53 are called the

principal axes of refraction. The tensor L, and hence the quadric (1.1)

depend, in general, on the material and its deformation history. Consider
now a plane, harmonic, light wave at x. The plane normal to the direction
of propagation of this wave (i.e. the "wave front") intersects the Fresnel
ellipsoid in an ellipse E. Fresnel's theory requires that the amplitude
vector of the wave be directed along one of the axes of E. There are
thus, in general, two harmonic waves possible for a given direction of
propagation: each has its amplitude vector directed along one axis of E.
The lengths of the semi-axes of E are the reciprocals of the speeds of
these two harmonic waves.

Consider now a single, fixed, Cartesian coordinate system
(x,¥,2), and suppose that the body Tg under consideration has the form of
a strip bounded by the parallel planes z =+4+4£/2, =z = -£/2. We permit
the Fresnel temsor L to vary with x and y in B but assume that L is
independent of z and is everywhere such that it has a proper vector §3
parallel to the z-axis. When a plane harmonic wave propagating along the
z-axis enters Za, it is, according to Fresmel's theory, split into two
harmonic waves with mutually perpendicular amplitude vectors. These two
waves continue to propagate in the z-direction, but with different speeds
v

v Each wave has its amplitude parallel to a proper vector of L,

1’ "2

and the speed of the wave equals the square root of the corresponding

proper number of L. Upon leaving 23 the two waves have a relative



retardation r given by

r = z(n1~'n2), (1.2)

where the numbers

=]
il

2 i=1,2, (1.3

are called principal indices of refraction. Here c is the veloecity of

light in vacuo. During its traverse of Zg, each wave experiences an

absolute retardation r. given by

r = 2(ni—'l), i=1,2, (1.4)

Of course, the relative retardation r is just the difference of the

absolute retardations:

(1.5)

We have here assumed that 43 is such that one principal axis of

refraction, k., is everywhere parallel to the z-axis of the system (x,y,z).

3!
One can determine r and the direction of the two remaining principal axes,
51, 52, by using a plane polariscope, i.e. by placing 23 between two
crossed polarizing devices which can be rotated in planes parallel to the
(x,y)-plane in such a way that the polarizing axes of the devices remain
at right angles. Whenever the polarizer, i.e. the polarizing device
between Z3 and the light source, has its polarizing axis parallel to 51
or 52, each light wave transmitted by the polarizer passes throughizgwith
no change in the direction of its amplitude vector. Such a light wave is
blocked by the second polarizing device, called the analyzer. If 51 and

k, vary from point to point in the (x,y)-plane, then the locus of the

2



points in this plane for which either k. or k, is parallel to an axis of

1 2

the polarizer appears as a dark figure when viewed through the analyzer.
This dark figure, which depends on the orientation of the polarizer,

usually takes the form of a pair of curved lines, called isoclinic lines

or isoclines. By rotating the polarizer and analyzer in unison, a family

of such lines, called the isoclinic fringe pattern, is obtained. Obser-

vation of this pattern enables one to determine the axes of refraction
for ZZ as functions of x and y. Whenever the axis of the polarizer is

not parallel to a principal axis of refraction, each of the two harmonic
waves transmitted by & is resolved by the analyzer into two waves: a
component parallel and a component perpendicular to the polarizing axis.
Of course, only components along the axis of the analyzer pass through it.
Thus, the analyzer transmits two waves with colinear, but oppositely
directed amplitude vectors of equal magnitude; these two transmitted waves
will interfere (i.e. cancel) whenever the relative retardation r obeys

the formula

r = NA, (1.6)

with N an integer and A the wavelength of the light in vacuo. For each
integer N, the locus of (x,y)-values for which r = NA forms a figure which
appears dark when viewed through the analyzer; this dark figure, which
often is a curved line or set of curved lines, is referred to as the N'th

isochromatic line or isochromatic fringe. The family of all isochromatic

fringes (i.e. N = 0,*1,...) is called the isochromatic fringe pattern.

Through observations of the isochromatic fringe pattern, the relative

retardation r can be determined at several values of x and y. It is clear



from equation (1.2) that if the thickness £ of 23 is known, measurement

of r yields the difference A between the indices of refraction n,, n,:

1’ 72

A £ 4 ~n =%. (1.7)

The number A is called the birefringence of 28 (at x and y) for propaga-

tion in the direction E3.
The above description of the properties of isoclinic and

isochromatic lines is summarized and extended in a single formula which,

for given values of A and £, describes the variation of the intensity I

of the light transmitted by the analyzer as a function of the birefringence

#

A and the angle ¢ between k. and the axis of the polarizer:

1

I = A sin2(2¢)sin2<%fi A> . (1.8)

Here A is a constant which depends upon the loss of light through reflec-
tion, absorption, and scattering. It is clear from (1.8) that I vanishes
wherever ¢ equals 0° or 90° and wherever ZA/A is an integer; i.e. on the
isoclinic and the isochromatic lines. Under appropriate circumstances
one can use (1.8) to determine the birefringence from intensity measure-
ments at values of x and y which are not on an isochromatic fringe. An
often simpler method of obtaining A away from the isochromatic fringe
pattern involves the insertion of a compensator between 23 and the
analyzer. The compensator, when properly aligned with respect to 51 and
EZ’ gives an additional and controllable relative retardation R to the
light reaching the analyzer; one adjusts the compensator so that the

total relative retardation, r +R, equals an integral multiple of A, and

then calculates A, using (1.7).

#Cf. e.g. Born & Wolfe [1959, 1] §14.4.3.
5



The indices of refraction ny and n,, at given values of x and

2}
y, can be measured with an interferometer. As usually employed, such a
device splits the incident wave into two waves; one is polarized along a
principal axis of refraction for Eand is passed through B to incur a
retardation given by equation (1.4). The second wave is directed through
a medium which induces a controllable retardation. The two waves are then
recombined and are found to interfere whenever the difference in their
retardations is an integral multiple of A. Thus, if A is known, r, and

r, can be determined. Once T Toy and the thickness £ are measured, the

2

indices of refraction ny and n, may be calculated from (1.4).

2. C(Classical Theories of Induced Birefringence

a. Photoelasticity

Most transparent solid materials which are not birefringent in
stress-free states become birefringent when deformed. When the Fresnel
tensor is determined by the present configuration, and is independent of
the past history of deformation, this phenomenon is called the photoelastic
effect.# For isotropic materials the photoelastic effect can be described

by assuming that each principal direction of stretch is a principal axis

of refraction and that the principal wave speeds v, (and therefore the

=
#h

e

principal indices of refraction o, c/vi) depend upon only the prin-
cipal extensions €, Employing the assumed isotropy of the material, it

can be shown that, in the limit of infinitesimal deformations, this

iy

he phenomenon was apparently first observed by Brewster [1816, 1].

6



dependence must have the form:

(o]

n, = n +Clel+02(el+ez+e3),
(o]

n, = n +Cle2+02(el+€2+e3), (2.1)
(o]

ng = n +C1€3+Cz(€1+€2+€3)'

These relations, which may be called the constitutive equations of linear

photoelasticity agree, for small deformations, with those proposed by

Neumann [1841, 1]. The numbers no, C and C, are material constants; of

1’ 2

o . . . . .
course, n is the refractive index of the unstrained material. It follows

from (2.1) that the birefringence for wave propagation along k, is given

3

by the equation

A == n, —n = (C, (e

) 1617 €5, (2.2)

1

which is sometimes called the "strain-optic law".
For an isotropic elastic material subject to an infinitesimal
deformation, the principal axes of stress lie along the principal direc-

tions of stretch, and the principal stresses g, are given by

o, = Zpel + >\,(€1+€2+€3),
o, = 2u62 + X(el+ €yt 63), 2.3)
Oy = Zpe3 + A(el4-ez+-63),

where A and p are called the Lamé constants. For solids these material

constants are expected to obey the inequalities

L >0, A+Su > 0. (2.4)



When such is the case, each principal axis of stress is a principal axis

of refraction and the principal indices of refraction can be regarded as

functions of the principal stresses. Indeed, (2.1), (2.3), and (2.4) yield

o
n, = n + ¢, 9 + c2(014-024-03),

o
n, = n +c102+c2(01+02+03), (2.5)

=
]

0 .
n +c¢,0,+ c2(01+-0

3 193 +03),

2

where c, and c, are material constants related to C A, and y. The

1

equations (2.5) are, in essence, the photoelastic relations proposed by

#

1 G

Maxwell. It follows from (2.5) that the birefringence for propagation

along k., obeys the equation

3

A = e (0;= 0y, (2.6)

which is often called the "stress-optic law".

In the most common way of testing the photoelastic relations,

s

one subjects a layer of material to plane stress. It is usually found

, . o}
that the material parameters occurring here, such as n~ and c depend

1’
on the frequency of the light, an effect called dispersion. We do not

discuss dispersion in this essay, but instead focus our attention on

#Maxwell [1853, 1], unfamiliar with the earlier work of Neumann [1841, 11,

who had taken strain as the independent variable, formulated a theory of

photoelasticity in terms of stress. For small deformations of elastic
materials, the theories of Neumann and Maxwell become identical.
Nevertheless, in proposing that it is the stress that determines
birefringence, Maxwell innocently unleashed a controversy which occu-

pies much of the subsequent literature on the subject.

i

For an historical survey see Coker and Filon [1931, 1].

8



phenomena which can be studied using light of a single frequency. First,
it is known that the equations (2.1) and (2.5) can hold only for small
strains. Second, even in the limit of infinitesimal strains, it is often
observed that the birefringence varies in time during intervals of constant

#

stress” or strain; such optical creep or optical relaxation is indicative

of a dependence of birefringence on the past history of deformation.

b. Streaming Birefringence

It has long been known that viscous fluids can exhibit

#H iz

birefringence when flowing. As we shall show in a forthcoming paper,
for an incompressible simple fluid with fading memory,Hjj in the limit

of slow motion, each proper vector of the rate of deformation tensor Q,gjiﬁ

is also a principal axis of refraction, and the principal indices of

#

Rossi [1910, 1] made an extensive study of the phenomenon in

celluloid; cf. GCoker & Filon [1931, 1] §3.34.

Optical creep was observed in gelatine by von Bjerkén [1891, 1];

##Maxwell [1873, 1] observed the effect in Canada balsam in 1866, and
Mach [1872, 1] independently observed it in glass.

i

The matter was treated also in the work Coleman & Toupin referred to

earlier [1962, 2].

i

The concepts of "fading memory" and "slow motion" employed here are
those used by Coleman & Noll [1960, 1] in proving the retardation

theorem,

T

D, also called the stretching tensor, is equal to the symmetric

part of the velocity gradient.



refraction are determined by the proper numbers of D through linear

equations of the form

n, = n°+ zﬁdi, i=1,2,3, (2.7)

with n° and ﬁ material constants. This yields the relation

A = 27(d,-d (2.8)

2)

for the birefringence A = n; = n,.

For quantitative experimental studies of streaming birefrin-
gence, one usually employs Couette flow. 1In this circular flow of a
fluid confined between coaxial cylinders, at each point x, one proper

vector of D, say d,, is parallel to the common axis of the cylinders, and

3)

the remaining two form angles of 45° with the radial vector to x. One
studies this flow with a polariscope arranged so that the light is
propagating in the direction 93; the smallest of the angles formed by

#

the isoclinic lines” with the axis of the polarizer is usually denoted

by X and called the extinction angle. Now, if each proper vector of D

is also an axis of refraction, as is the case in the "slow flow" approxi-
mation behind equation (2.7), then the extinection angle should be 45°.

Steady flow experiments on many 'mon-Newtonian fluids" show that X is

i

In Section 21 we remark that if the gap between the inner and outer
cylinders is small, then each isocline is a straight line lying along a

radius vector.

10



not, in general, equal to 45°, but approaches this value as the rate of
shear tends to zero.#
In the same limit of slow motions for which (2.7) holds, the
stress in a general incompressible simple fluid with fading memory obeys
the constitutive relations of a Navier-Stokes fluid;## i.e. the principal

axes of stress equal the proper vectors of D, and the principal stresses

obey the equations

o, = -p+2nd,, i=1,2,3 (2.9)

1 J

where p is a hydrostatic pressure and 7 is a positive material constant
called the viscosity. It follcws that, in the limit of slow motionms,
each principal axis of stress is also a principal axis of refraction, and

the birefringence A is given by a relation of the form

A = b(Ol-'OZ) (2.10)

with b = 1/m1.
Although in the limiting cases of small deformations of solids
and slow flow of fluids the principal axes of stress are expected to lie

along principal axes of refraction, there is no theoretical principle or

D

Kundt [1881, 1]; solutions of collodion in alcohol and ether were among

epartures of X from 45° were apparently first observed and studied by

the substances for which large departures were observed. It appears
that De Metz [1888, 11 {1906, 1] made the first quantitative measure-

—n, in Couette flow.

ments of the birefringence n 2

1
##Cf. (1960, 1].

11




reliable experimental evidence indicating that such an elementary rule
holds in general.#

We here seek a simple theory of birefringence in viscoelastic
materials consistent with the general principles of mechanics and
electromagnetism and with the observed phenomenon of optical creep.
Furthermore, we want the theory to be sufficiently general to enable
discussion not only of photoelasticity for solids but also of streaming
birefringence for non-Newtonian fluids (at arbitrary rates of shear).
Hence, we must drop the linear approximations which are made in classi-
cal theories of mechanics and must also allow the past kinematical
history to influence present optical and mechanical behavior.

Any theory which accounts for past deformations of the medium
is beset with difficulties not encountered in the classical theory of
photoelasticity; these difficulties arise from the fact that motion must
be discussed; i.e. the medium cannot be assumed to be always stationary
as is done in photoelasticity. Of course, we shall here neglect rela-
tivistic effects of order u2/c2, where u is the speed of the material
points and c¢ is the speed of light in vacuo. Even in this approximation,
the Maxwell-Lorentz equations for the electromagnetic field in moving
media are considerably more complicated than for the case of stationary
media. A simple theory of birefringence emerges only if one can safely
neglect the dragging of light by the moving dielectric medium. Fortu-
nately, for the fluid speeds ordinarily encountered in viscoelastic flows,

such dragging is truly negligible.

#Coleman & Toupin [1962, 1]; see Sections 15 and 21 of this report.

12



II. BASIC ASSUMPTIONS

3. Concepts from Electromagnetic Theory

Fresnel's theory of double refraction in transparent media can
be shown to rest upon the foundation of Maxwell's electromagnetic theory
of 1ight.# In the terminology of electromagnetic theory, induced
birefringence in an isotropic material is a consequence of the dependence
of dielectric properties upon the history of deformation.

As we are here concerned with non-magnetic, non-conducting,
electrically polarizable media, we may write the basic field equations

of electromagnetic theory in the form

o
ST < curl h, divd = 0,
36 (3.1)
35 = -curl e, divb = 0,
with
d = e,e+p, h o= u'b +u X p. (3.2)

Here e is the electric field, b is the magnetic flux density, p is the

polarization density, and u is the velocity of the medium. The two

vectors d and h, given by (3.2), are called, respectively, the electric

displacement and the magnetic field. The positive numbers €, and pu, are

o

fundamental constants which depend upon only the choice of units and obey

TMaxwell (1865, 1] §§102-105, [1873, 2]1; see also Born & Wolf [1959, 1]
and Truesdell & Toupin [1960, 2].

13



the relation o€, = c_z, with c the speed of light in vacuo. A saltus
[h], [g], etc. experienced by h, d, e, or b across a surface with unit

normal vy, must be compatible with the following jump conditions:

il
o

x [nl -Id]

<

9,

<

(3.3)

-[pl

"
(]

X [g]

<

9,

<

Now, the simplest electromagnetic theory of light in meving

#

media is based upon the constitutive equation
P = €,Z(e + uxh), with Z = K—1; (3.4)

here 1 is the unit tensor and K is a symmetric, positive definite, linear

transformation, called the dielectric tensor and assumed to be indepen-~

dent of e, b, and u. (In subsequent chapters we shall discuss the way K
is related to the history of the deformation.) On substituting (3.4)

into (3.2) we find that

bl = B+ e Tlux Z(xb) + ey XZe
(3.5)
g = eo,IS,%-'-eoZ,(gxh)'

/

The doubly underlined term here is O(uz/cz), and may be safely neglected

when the speed of the medium is small compared with the velocity of light.

The singly underlined terms give rise to the dragging of light by the

i

medium. It is hoped that for the analysis of light waves in slowly

#Cf. Truesdell & Toupin [1960, 21 p. 737.

#os. ibid. p. 740.

14



moving media, not- only the doubly, but also the singly underlined terms

can be neglected. In the present essay we make such an approximation and

take
h = P-:l}?,,v
(3.6)
d = eoKe,

as our starting electromagnetic comstitutive equationms.

From a more general point of view, our starting assumptions
(3.6) involve approximations beyond the neglect of relativistic effects
and the dragging of light. Since we have assumed K to be independent of
e and b (and their past histories) and have implicitly set the electric
current and the magnetization equal to zero, application of our theory
should be restricted to weak fields (i.e. to light waves of "normal"
intensity) and to media which neither absorb strongly nor rotate light.
Materials obeying constitutive relations of the form (3.6) are called

perfect dielectrics.

If the dielectric tensor K is constant in space and time, then
Fresnel's construction, discussed in Section 1, gives a correct descrip-
tion of a single plane harmonic electromagnetic wave governed by the
equations (3.1) and (3.6), provided one identifies the Fresnel temsor L
1

with 025- :

L = ¢k, K = cL . (3.7)

That is, the principal axes of refraction 51 are the proper vectors of K,

and the principal wave speeds v, are related as follows to the proper

15



numbers Ki of Ki
2 .
v, = cK,, i=1,2,3. (3.8)

By (3.8) and (1.3), each principal index of refraction n, obeys the

simple formula

n< = k., i=1,2,3. (3.9)

The problem of describing a plane electromagnetic wave

propagating in the direction k, through the strip B of Ssection 1 may be

3
solved by applying the jump conditions (3.2) to the incident, reflected,
and transmitted waves at each surface of 7%?. The exact solution is

#

complicated;” but if the material is such that there is but a small loss
of light by reflection at the entering and exiting surfaces, then the
conclusions of Section 1 give a very good approximation to the exact
solution. Thus, under the conditions expected in applications, a plane
polarized wave incident normal to B is resolved into two waves which
have mutually perpendicular amplitude vectors along k

and k, and which,

1 2

during their traverse of 78, experience a relative retardation r given
by (1.2).

The optical properties of a perfect dielectric are completely
determined when its dielectric tensor K is specified. However, any
invertible function of K, such as the Fresnel temsor L, will do equally
well. It appears to us that the theory of induced birefringence takes

its simplest form if one works with the refraction tensor N, defined as

#

See Dill & Fowlkes [1966, 2] and Born & Wolf [1959, 1] §7.6.1.
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the positive definite square root of K:

[= 9
Hh

e K1/2

~

N i (3.10)

By (3.7) and (3.9), the proper vectors of N are the principal axes of
refraction hi’ while the proper numbers of N are the principal indices of

refraction n,. 0f course, N determines L and K through the relatioms

L= ?N2, K = gz. (3.11)

4., Kinematics and the Refraction Tensor

In non-relativistic field theories, a body Zgis a smooth,

three-dimensional manifold whose elements X are called material points or

particles. A configuration of‘ig is a smooth homeomorphism of 2B onto a

region in (three-dimensional) Euclidean space(ﬁ? A motion of 2 is a
one-parameter family of configurations, the parameter being, of course,
the time. A motion is described by expressing the position x at time t
of a particle X as a function é of t and the position X occupied by X in

some reference configuration )—fof %:
X = %(&;t)- (4.1)

The gradient of the function X with respect to X is temsor F called the

deformation gradient:

E = VX t). (4.2)



For a given motion, F depends not only on X and t but also on the choice
of the reference configuration ﬁ For the same motion, particle, and
time, the deformation gradient E' relative to some other reference

4
configuration Y. 4 is
G. (4.3)

/
Here G is the deformation gradient of z relative to ﬂ; i.e, if we
write &' = 5(’9: where )N(" and X are the positions occupied by X in the

/
configurations X ‘and J, respectively, then

G = VE®); (4.4)

~

to indicate this briefly one may use the notation,
’ :
' =ck. (4.5)

The important relation (4.3), which follows directly from the chain rule
for differentiation of composite functions, may be stated in the following
easily remembered form: If Ci, i=1,2,3, are any three configurations

of 5, and if F is the deformation gradient for the configuration Ci

(4, 3)

taking Cj as the reference configuration, then

(4.6)

E,1) Es,0E@, 1)

Since configurations are smooth homeomorphisms, deformation gradients are
invertible tensors; hence, in (4.2) and (4.4) we have det F # 0 and

detg#o.
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In a motion, the history of the deformation gradient at X up

to time t is a temsor-valued function on [0,») defined by
E'(s) = E@X,t-s), 0<s<w . 4.7)

We now lay down a constitutive assumption which broadly
generalizes the starting hypotheses of the classical theories of induced
birefringence discussed in Section 2. We assume that the dielectric

tensor K at time t is determined by a function & of the history Et:
t
K(e) = R(E). (4.8)

In view of (3.10), this is equivalent to assuming that the refraction

tensor N is determined by Et:
N(t) = R(ED. 4.9)
The functions & and 3, which are related by the equation
t,1/2

nES) = RE , (4.10)

. . . . . t
are called constitutive functionals. Since the function F~ depends upon

the choice of reference configuration, so also do the functionals & and .
The values of ® are assumed to be symmetric positive-definite
tensors, and the square root shown in (4.10) is to be interpreted as the
positive definite square root. Hence specification of & is equivalent to
specification of M, and the values of } are symmetric, positive definite
tensors.
Because we assume the equations (3.6), with K given by (4.8),

our theory leads to familiar linear field equations for the electromagnetic
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variables b and e. Since, however, we do not assume that either & or M
is a linear functional, the theory is, in general, non-linear when one
considers the influence of present and past deformations on optical

behavior.

5. The Stress Tensor

Consistent with our linear treatment of the electromagnetic
field, we suppose that the field is so weak that it has no effect on the
motion of the material. We assume that Cauchy's stress principle is

valid and that the equations of motion have the classical form
div § + pf = 0¥, (5.1)

with p the density of mass, f the body force per unit mass, and S the
stress tensor. When it is assumed that the electromagnetic field does
not influence the motion, the principle of angular momentum, together
with (5.1) and the usual assumptions regarding the absence of distributed

moments and couples, implies that Cauchy's stress tensor is symmetric:

s =5 (5.2)

We here take (5.2) as a postulate. Furthermore, as is usual in modern
continuum mechanics, we assume that § is determined by a function © of

the history of the deformation gradient:

s() = SED. (5.3)
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The constitutive functional & occurring here, like % and &, depends upon

the choice of the reference configuration.

6. Changes of Frame

In classical mechanics a change of frame is a one-parameter

family of transformations
time the parameter, such
G I-:

preserves distances.

be of the form

x — x, of Euclidean space C? onto itself, with
that at each instant the mapping x — x

~%

can be proved that every change of frame must

X, = g(t) +Q(r)lx-ql (6.1)

where, for each time t, ¢(t) is a point in Cf and Q(t) is an orthogonal

7
tensor; q is a point in ¢’ which can be taken independent of t. It

follows that under a change of frame the vectorial difference u of two

points is transformed into a vector U, equal to g(t)g; i.e., at each

instant t

o
o
Hh

e

where

2Ty TP Hix — XxT Yx o (6.2)
B " ¥ = O E-Y). (6.3)

Thus, since Q(t) is orthogonal, a change of frame preserves not only

distances, but also inner products and hence angles, and, in particular,

cf. Noitl [1958, 1].
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the unit normal n to a surface is transformed into

ne = Q(t)n. (6.4)

A~

A change of frame transforms a motion X into a new motion X, ,given by
X, &, 6) = Qe)IXX,t) —ql + ¢c(t). (6.5)

Therefore, by (4.2), at each particle X and time t, the deformation

gradient F is transformed into

F.X,t) = Q(O)ERE,t), (6.6)
and the history Et of F is carried into the function Ei given by
t t t
Fi(s) = Q(te-=s)E (s) = Q (9)E (s). (6.7)

It is assumed, in classical mechanics, that contact forces transform as

point differences# under changes of frame; i.e. if g is the stress vector,

then s —» s where
2 TR

)
Sw = g(t)g. (6.8)

Since s = Sn, it follows from (6.4) and (6.5) that

S = S, with S, = Q(£)sQ(t) *. (6.9)

R ~%

This last formula gives the transformation rule for the stress tensor;

i.e. 8(X,t) —84(X,t), where
5,60 = QBISE,0Q®) . (6.10)

We here assume, further, that, under a change of frame, e and d transform

#By "point differences” we mean "elements of the translation space of &'",
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as point differences, while b and h transform as "axial vectors" (or the

polar vectors of skew tensors); i.e. e —e d »d
2 ~ ~%? ~

~%)

b - by, and

E —92* with

ex(X, ) = Qt)eX,t),
dx(X,t) = Q(B)d(X,t),
(6.11)
bx(X,t) = ldet Q(©)1Q(B)B(X,t),
hy(X,t) = [der Q(e)1Q(e)h(X,¢t).

In classical continuum physics, the idea that material proper-
ties should be independent of the observer, or frame of reference, is

rendered mathematical by assuming the following postulate.

Principle of Material Frame-Indifference:#- If a given process is com-

patible with a constitutive assumption, then all processes obtained from
that process by changes of frame must be compatible with the same consti-

tutive assumption.

We here employ this principle. 1In so doing, we impose on our
theory the space-time structure of classical mechanics and, further, make
assumptions which imply that the simultaneous spinning of a dielectric
and its electromagnetic field has no effect upon the polarization of the
dielectric. The use of classical space-time seems appropriate to a theory

o H

which is to be applied only in situations involving "small speeds

#Also called the "Principle of Objectivity"; see Noll [1958, 1],

s

ee the discussion after (3.5).
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Let us consider first the electromagnetic constitutive equations

(3.6). If h, b, d, and ¢ obey these equations, and if e¢,, d,, b,, and h,

~$

are given by (6.11), then b, and h, obey (3.6)1, i.e.

-1
B, = Mgl (6.12)
while e, and d, obey the equation
dy = € Keex with Ku = Q(O)KQ(E) . (6.13)

Thus, the defining equations for a perfect dielectric (3.6) are compatible
with the principle of material frame-indifference if and only if we assume
that for changes of frame the dielectric tensor obeys the same transfor-

mation rule as the stress temsor; i.e. K — K, where
-1
Ko (X,t) = QER(X,£)Q(e) ™. (6.14)

It follows that the refraction temsor N, defined in (3.10), also obeys

this rule; i.e. N - N,, where
-1
NaX,£) = QUEIN(X,£)Q(t) ~. (6.15)

Now, frame-indifference requires that the constitutive func-
tionals % and © in (4.9) and (5.3) be such that these equations remain
valid whenever N(t), S(t), and Et are replaced by their transforms N.(t),

S.(t), and pe

~%

under a change of frame:

Ny (t) = R(EQ), Sw(t) = S(FL) . (6.16)
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Substitution of (6.7), t6.15), and (6.10) into (6.16) yields
QORMYB ™ = 2QEH,  evs®® T = &QED,  (6.17)
and, in view of (4.9) and (5.3), we have

t
F7),

~

I

QT ONEH O = m(Q"

(6.18)

Q" 8E"H O = SQED.

The principle of material frame-indifference implies that these relations
hold for every function gt whose values are orthogonal tensors and for
every history Et. Conversely, if the equations (6.18) hold as identities,
the constitutive relations (4.9) and (5.3) are preserved under changes of
frame. It i1s obvious that a similar remark holds for the functional &
and the constitutive equation (4.8).

Functionals which obey the identity (6.18) for each orthogonal-

. t . . .
tensor-valued function Q are called objective functionals. Thus, the

~

principle of material frame-indifference is here equivalent to the asser-
tion that the constitutive equations (3.6), (4.8), and (5.3) are such
that & in (4.8) and & in (5.3) are objective functionals. Of course, &

is objective if and only if M is.

o

ore precisely, (6.18) holds for every history Et in the domain & of M
and © and every orthogonal-tensor-valued function gt such that gtgt is

in O . In Coleman & Noll's theory of fading memory [1960, 11 [1961, 2], if
is a history in ia and if Qt(s) is orthogonal for each s, then, for

~

tht to be in i?, it suffices that the function Qt be measurable.

~

U
ot

14

25



III. GENERAL PROPERTIES OF CONSTITUTIVE FUNCTIONALS

7. Consequences of Material Frame-Indifference

The basic constitutive equations of our theory may be summarized

as follows:

N(E) = RED, $(6) = sED,
B(E) = ug'h(o), (7.1)
d = e K(e(t), with K(t) = N(B)7,

where E(t), called the refraction tensor, is positive definite and

symmetric, and §(t), the stress tensor, is symmetric. The constitutive

functionals M and © are objective; i.e. obey the relations

EO

QE) = Q OREIQ (@, SQE) = Q@eEH @™, 7.2

T wf
% *

for every history F and every function g whose values are orthogonal
tensors.

The general solution of identities of the type (7.2) is known#
and has found applications in continuum mechanics. To present the
solution, let us note that, by the polar decomposition theorem, the

(non-singular) deformation gradient tensor F can be written in two ways

as the product of a symmetric, positive-definite tensor and an orthogonal

7o, Noll [1958, 11.
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tensor:

F = RU = VR. (7.3)

~

The orthogonal tensor R and the symmetric, positive-definite tensors I

and V in these decompositions are uniquely determined by F and obey the

relations
v = g &g
v o= ' g (7.4)
v o= RR

R is called the rotation tensor, while U and V, respectively, are called

the right and left stretch tensors; C and B are called the right and left

t

Cauchy-Green temnsors. The functions Et, , and gt,defined by

i

R (s) = R(X,t-s), U“(s) = U (x,t-s), G%(s) = G(X,t-s), O0<s<w, (7.5)

are the histories of the rotation tensor, the right stretch tensor, and

the right Cauchy-Green tensor at X up to time t.

Clearly, B,t(s)-1 is, for each s, an orthogonal tensor, and if,

. * t * t -1 .
in (7.2), we put F (s) = F (s) and Q (s) = R (s) 7, we obtain

s = R wEHRE), e = RO TSEHR(E). (7.6
Hence, (7.1) can be written#
’ TT1&2
t -1 t -1
N(t) = R(ORUORME) T, s(t) = RMSWOHRME 5 (7.7

#The equation (7.7)2 was first obtained by Noll [1958, 11.
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i.e. a knowledge of the history of the right stretch tensor and the

present value of the rotation tensor suffices to determine the present

values of the refraction and stress tensor.
It is often convenient to employ the functionals ﬁ, é,

defined by the equations

~ % ‘c‘s‘% ~ x *—%

) = mC ), 8(c) = & ),
~ % * A -1 I * T K
RcH = g (0 2T(EHS (03, &) = ¢ (0 28(cHg

3
€]

(7.8)

which hold for each function gh on [0,») whose values gh(s) are symmetric,

1

. .. *2 .
positive-definite tenmsors. Here C denotes the function whose value for

L

* L % % ~ L
each s, G (s)2, is the positive-definite square root of C (s), and QC(O) 2

=]

%*
is the inverse of C (0)2. 1In terms of these functionals, (7.7) can be

written
NE) = ROTEHRE T, s = ROEECHR® ™

#

or, equivalently,
Xt T A T
N(E) = E®REOHE®T, s = EmSEHEM®T.

One may write (7.9) in the form

Ny = feh, sy = &iH,

where

RO INORE)  and  Fe) LE ree)Lscor(e)

a8
[}
h

Nt

(7.9)

(7.10)

(7.11)

(7.12)

#The equation (7.10), was obtained by Green & Rivlin {1957, 1].
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are called, respectively, the rotated refraction tensor and the rotated

stress tensor.

8. Material Symmetry

As we have already mentioned, the comnstitutive functionals ¢
and © are affected by the choice of reference configuration. Since the
motion determines N and § independently of the reference configuration,
. . / .
it follows from (4.3) that if H = gﬂ, then for each motion, at each

time t,
. _ t ty t

where

t’ t
F (s)G = F (s), 0<s <w, (8.2)

and the subscripts on Mt and & show the choice of reference. Thus, if we

S /
put F = Et, we obtain the following general formulae:

* * * * ’

Tgi(ED) = g (EQ), Sq/(E) = Gg(E G for A'=GR. (8.3)
The relations (8.3) hold for every history E and hence determine ‘ﬁﬂ/ and
63' when i)'ti and 6E are known.

If g and pﬂ, are the mass densities in two reference

configurations z and A with 2= gaf, then

- 1
oo = |det gl 5 - (8.4)
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We now take over and extend some definitions employed by

Noll [1958, 1]. The group Jﬂ of unimodular tensors H for which

mgx= Ty %z~ S (8.5)

is called the symmetry group (of the material at X) relative to the

reference configuration ﬂ# The elements of &% may be interpreted as

the deformation gradients of those changes of reference configuration,
starting from /4, , which are "undetectable" in the sense that they preserve
both the mass density and the constitutive functionals Tt and &. By (8.3),

a unimodular tensor H is in sz if and only if

g

RgEB = Tp(E)  and  SHEH = S,(E)  (8.6)

*
for all histories F .

The symmetry group 'Zf for a given material depends upon the
reference 7? In fact, it is easily shown that if A = giﬁ, then J /
equals the conjugate, QJR g-l, of Jﬂ under G; i.e. E’ is in céz, if

. ; -1 .
and only if H' = GHG for some H in J%

If there exist reference configurations # for which the
#
corresponding symmetry groups \f/z contain the full orthogonal group (7 I

as a subgroup, then the material is called isotropic and these reference

configurations Z with <, o ﬂvare said to be undistorted. If, for some%,

x

#H is unimodular if and only if ldet E' = 1. Noll [1958, 1] called

~

Jﬂ the isotropy group relative to <.

i

i.e. the group of all orthogonal tensors.
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MOntains % as a subgroup, then the material is said to be a solid.

Hence, each isotropic solid has configurations z for which ‘/ﬁ = ﬂv

1if % is the unimodular group u,# then the material is a fluid; it
is easily shown that if /Z = U for one reference configuration E,
then gé%v= U for every other reference configuration 752 and thus:
every reference configuration of a fluid is undistorted.

There is a theorem of group theory which states that, if a
group,Z? is a subgroup of the unimodular group 7£ and contains the

orthogonal group ﬁ'«as a subgroup, then either 1&=Zé or ,&= 0,,#

Hence, each isotropic material is either a solid or a fluid.

9. Consequences of Material Isotropy

It can be Shom§i§i§ that for each isotropic material, whether
solid or fluid, there exist two functionals, N and é, such that if R(t)
. . t . .
is the rotation tensor and U the history of the right stretch temnsor,

both taken relative to an undistorted reference configuration ﬁ, then

N(E) = ROTGEORM ™, 8@ = ROSGIORM™,  9.1)
where
y = pé;/3 : (9.2)

i.e. the group of all unimodular tensors.
Mprauer [1965, 11, woll [1965, 31].
Hi§Coleman [1968, 11.
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and paz is the mass density in the configuration ;f’; the functionals %
and & are independent of the choice of 7{, provided 72 is undistorted;

furthermore, RN and & obey the relations

Tue™H = giwHg T, Sugh = BaHet .3

~ ~

(9

for each orthogonal tensor Q and each history Eh in the domain of M and &.

It is a consequence of (9.1) that for an isotropic material

the constitutive equations (7.1) may be written

1&2

Ry = R0, S = etiey, (9.4)

t . . .
where E(t) and U~ are taken relative to an arbitrary undistorted reference

configuration A and

[oN

Ny 2L Ry tnoro, S £ Ry lsore)  (9.5)

[o

are the rotated refraction tensor and rotated stress tensor relative to

72 . It follows from (9.3) that, for each orthogonal tensor Q, the

~ ~
constitutive functionals M and © obey the relations

~ * _1 A % _]_ ~ B3 _1 ~ <«
QU Q ;pﬁ) = QU 5009 QU Q sp,) = QBU ;

~

o

as identities in p7a and E“.
Functionals which obey identities of the type (9.3) and (9.6),

for each orthogonal tensor Q, are called isotropic functionals. The

isotropy of the functionals ﬁ and % may be expressed as follows: For

each constant orthogonal tensor Q,

ut S QUtQ'1 =>

~ ~~

13=14

) >@q{e)g and F®) ~g@Q . ©.1)
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Here A — B means "A replaced by B", and =>, as usual, denotes
implication.
An alternative form of the equations (9.4) is

N(E) = WC5e,), 8(t) = &

9.8
% (9.8)

oﬂ),
where gt is the history of the right Cauchy-Green tensor relative to an
arbitrary undistorted reference configuration 762, and E(t) and E(t) are
again given by (9.5). The functionals ® and %, like % and %, are isotropic;

i.e. for each orthogonal Q,

w =] ~ % -1 w - & -1

QeQ se,) = HCeq 8ee'q g = PBCg09 (949

identically in %f, and gh. Thus, when Q is orthogonal,

~

1

t Bl = N(e) > Qi(e)Q™™  and  5(¢) —>g§(t)g'l. (9.10)

¢" - qcg

~

There is a striking formal similarity between the equations
(9.8) and (7.11). It will be recalled, however, that (7.11) holds for
all substances covered by the basic assumptions laid down in Chapter II,
while (9.8) is appropriate to isotropic materials; the constitutive
functionals in (7.11) are not, in general, isotropic, but the functionals
in (9.8) are. Furthermore, in (7.11) no simple rule is implied for the
dependence of M and & on the choice of the reference configuration 7Z,
while here we see that, for isotropic materials, if / is chosen to be
undistorted, the corresponding functionals can depend on & only through
the density 9?' (In fact, the dependence on %2 must be compatible with

the formulae (9.1) and (9.2).)

33



Let LT be the (comstant) function on [0,®) with value 1; i.e.
M) = 1, 0<s < w. (9.11)

Of course, for a body which has never left its reference configuration 7%,or
. . % I .
has been subjected to only rigid rotations from s & =1 . Employing

~

(9.10), it is easy to show that, if # is undistorted, then

¢f =11 = N - R°(g)L  and  §(6) = -p(g)L. (9.12)

Thus, for an isotropic material which has always been in a single
undistorted configuration 7f'or has experienced only rotations from 7%1
the velocity of light is the same in all directions, while the stress is

a hydrostatic pressure; this velocity and pressure are determined by p

O -

10. General Properties of Fluids

For a fluid, every configuration is undistorted, and hence, in
each of the formulae of the previous section, one can let 7 be the
configuration at time t. When such a choice is made, we have F(t) = 1

)

R(t) =1, N(t) = N(t), S(t) = §(t), and (9.1) reduces to

~

N = Romph, s =8mED, with v =) 20 @0

~

t . . t . ,
Here Et is a function on [O,w) such that gt(s) is the right stretch
tensor at time t-~s relative to the configuration at time t. The
functionals N and & depend on only the fluid under consideration, and,

of course, obey the identities (9.3) for each orthogonal temsor Q. The

~

34



same choice of reference causes (9.8) to reduce to
[~ P ~ .t
N = Bge), s = &@p ), (10.2)

where % and & obey the identities (9.9) for each orthogonal Q, and gz is

such that
. .
cie) = Ui = ELTE ), 0<s <w. (10.3)

The function EE, called the history of the relative deformation gradient,

is computed as follows. Let %t(z,T) be the position in space at time 7
of the particle which has the position x at time t. The relative

deformation gradient at time T (i.e. the deformation gradient at time T

relative to the configuration at time t) is the tensor

Et(T) = Vé%t(z,T), (10.4)
and we have

E (s) = E (t-s), 0<s < e, (10.5)

The function EE is called the history of the right relative Cauchy-Green
tensor. Clearly

X (x,8) = %,
and hence

t

t
E (6) =1 and G (0) =F,

) = 1. (10.6)

The isotropy of the functionals in (10.1) and (10.2) is expressed in the

following assertion which is true only for fluids: For each orthogonal
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tensor Q,
squfet = N S QunQt and  §(®) Ses(QTT (10.7)

and, similarly,

foqoie™ = N® - Nt and §(8) »g8(0)Q . (10.8)

It follows from (10.2) and (10.3) that, as expected,

G =1" = N =)L and  §&) = -p(pe)L.  (10.9)

Thus, for a fluid which has been subjected to only rigid rotations,
regardless of what the present configuration is, the index of refraction,
o

n°, is independent of direction and the stress is a hydrostatic pressure,

-pl; both n°® and p are determined once the density is specified.”

#

For an incompressible fluid, however, p is arbitrary, in the sense that

it is not determined by the local motion alone. See Section 17.
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IV. PARTICULAR MOTIONS OF ISOTROPIC MATERTALS

11. Sheared Extensions

The constitutive equations (9.8) for an isotropic material
often can be simplified if something is known in advance about the motion
the body is undergoing. 1In this chapter we describe the reduced forms
taken by the functionals M and & in a broad class of motions called
"sheared extensions'. Although the discussions of this section and
Sections 12 and 13 are valid for general isotropic materials, whether
solid or fluid, we expect that the results we give here will find their
main application in the study of solids. The reductions we describe for

€ were derived by Coleman [1968, 1], and we summarize his results without

2
repeating the proofs. Since Rt obeys the same identities as %, the
theorems of Coleman can be applied also to aa

Let E(t-s) be the deformation gradient at a particle X at time

t-s relative to an undistorted reference configuration.~7g. One says

that the history of X up to time t is a sheared extension if, for all

s > 0,

F(e-s) = z(t-s)g(t-s) (11.1)

where P(t-s) is an orthogonal tensor for each s, and M is such that there

exists an orthonormal basis Ei’ independent of s, relative to which the
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components of M(t-s) have the form

Bl(t-s) 0 0
M(e-s)] = {(t-s) B, (t-s) 0 s B, (t-s) > 0; (11.2)
0 0 B4 (t-s)

Ei is called the canonical basis of the sheared extension. In the special

case in which §(t-s) = 0, the motion is called an extension; if
ﬁl(t-s) = Bz(t-s) = 53(t—s) =1, the motion is called a shear; we discuss
these two important special cases in Sections 12 and 13 below. First,
however, we give some results valid for gemeral sheared extensions.

In a given sheared extension, the histories of the rotation
tensor R and the right Cauchy-Green tensor C can be calculated from P and

M. Using the relation
T
C(t-s) = E(t-s) E(t-s) (11.3)
one may easily show that the history of a particle up to time t is a

sheared extension if and only if there exists an orthonormal basis hi’

independent of s, relative to which

Yo(t-s)  E(t-s) 0
[ge-s)] = | E(t-s) Vi(t-s) o |, (11.4)
0 0 yg(t-s)
2
GO 5—@—'%, Y. (t-s) >0
1
¥, (t-s)

for all s > 0; this basis hi is, of course, the canonical basis of the
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sheared extension; furthermore,

e =8, v, =d5+t?, v, =8

Y, =8B (11.5)

27 3 3

or, equivalently,

C=tr,, B =M-*M2, B, =7, By =Y

3 (11.6)

3¢
The following theorem gives the reduced forms taken by the
equations (9.8) when the local motion is a sheared extension:# If,
relative to an undistorted reference configuration 762 the history up
to time t of an isotropic material is a sheared extension with canonical
basis hi’ then the matrices of the components, relative to hi’ of the
rotated refraction tensor (9.5)l and the rotated stress tensor (9.5)2,

have the forms

r'1\711(1:) ﬁlz () 0

[N(e)] = (N, (&) N, () 0o i, (11.7)
i 0 0 1\133(t)a
§;.(8) 8,00 0 W

[S(e)) = [5,(6) §,,(0) o |; (11.8)
i 0 0 533(t)~

moreover, six scalar-valued material functionals, v n ,Zk, and

Z}S, ‘DS’ ’éS’ determine the non-zero components in (11.7) and (11.8)

#Cf. {1968, 11 Thm. 7.
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as follows:

Np®) = fN(gt’ytl:’ytz:ﬂg;%)’w
N 0 = 455,550, a1.9)
N, (6) = & &5V, Y3i8,), > |
W) = ZyG5Y075Y50,), )
8,0 = G555,
S0 = G5V, Y550,),

(11.10)
830(8) = g5,V 7550,),
85000 = 2 G Y, Vi,

with

i

e5(s) = E(t-s), Yi(s) =V (t-s), 1=1,2,3, OSs<w  (11.11)

These functionals ﬁi’ /ii, /éI (I = N,S) are independent of the directions

h., depend on Zg only through the density p and obey the identities
Nl, z s
* % % % * Kk % % \
F1€ Y9,V Y5500 = 3G ,71,72,735072),
* Kk K%k %ok kX
71('5 )71)72)735%) = —ﬁ(g ,71,72,73,-%),
%* 7* k. Y kR Lk Kk 1
AR LYYy Y50,) = 4G ,’Yl,'yz,v3,9z),> (11.12)
N I
LYY V50,0 = Y] Y,,7Y550,),
* % _h % I S *
1YY, Y3500 = 206,V LY, Y5500,
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* 4 * % .
for all functions £ , Vl, 72, Y3 in their domain of definition. Furthermore,

k3

+ of * kK = o ot yE N 1
I( J’YBJ.YZ)’Y]_:%) = I( 171;72)73:%) (11.13)
where OT is the function on [0,®) with constant value O:

oT¢s) = o, 0<s<w (11.14)

12. Motions of Extension

Since the tensor R in (7.3) is an orthogonal tensor, the right
and left stretch tensors, U and V, have the same proper numbers Xi; these

numbers are called principal stretch ratios. The proper vectors of U and

i<

, u. and Ei, are called, respectively, the right and left principal

~

directions of stretch and obey relations of the form

u. = Ru,. (12.1)

The proper numbers Oi and proper vectors 84 of the stress temsor § are

called principal stresses and principal axes of stress. The principal

= R 1sr

~ R

Lo

stresses are also the proper numbers of the rotated stress
while the principal axes of stress are related as follows to the proper

~

vectors s, of S:
Nl ~

s; = Rs. (). (12.2)

Similarly, the proper numbers n, of N, i.e. the principal indices of
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refraction, equal the proper numbers of E = E-IQE, and the principal axes
of refraction Ei’ i.e. the proper vectors of N, are determined by R and

the proper vectors Ei of ﬁ through the formula
k., = Rn.. (12.3)

If the right principal directions of stretch are constant in
time at a particle X, then the motion of X is an extension. More
precisely, one says that the history of X up to t is an extension if
there exists an orthonormal basis Y (independent of s) relative to

which the matrix of the components of E(t-s) has the form

Xl(t-s) 0 0
[ut-s)1 = 0 A, (E-s) o |, (12.4)
0 0 X3(t-s)

for all s > 0. The vectors u, are then obviously right principal direc-
tions of stretch and the numbers Xi(t-s) are principal stretch ratios.
Furthermore, it is obvious that, in the terminology of Section 11, an
extension can be defined to be a sheared extension with {(t-s) = 0 for
all s > 0. For an extension, P(t-s) in (11.1) can be set equal to R(t-s);
M(t-s) then equals U(t-s), the basis Ei equals the basis L while, in
(11.4), E(t-s) = 0 and Vi(t-s) = Xi(t-s) for all s > 0.

The main reduction theorem for motions of extension states the

#

following. If, relative to an undistorted configuration 7&?, the history
up to t of an isotropic material is an extemsion, then at time t each

left principal direction of stretch Ei(t) is also a principal axis of

#See Coleman [1968, 1] Thm. 5.
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refraction ki(t) and a principal axis of stress s(t); moreover, there are
two scalar-valued material functionals, 7f§ and 768’ which determine the

principal indices of refraction ni(t) and the principal stresses Gi(t) as

follows:
_ t st L,
n (®) = FROLAA5i00),
_ t 4t Lt
n,(£) = fn%’xl%’%)’ (12.5)
_ £\t t,
n3(t) = fN(K:i’)\'l’KZ’pX)’
_ £t Lt Lt
op(e) = 7Z30‘1’>‘2’>‘3’%)’
_ £ttt
o, (t) = Z!Sazﬂl,xy%), (12.6)
_ £yt L,
03(‘3) = 7%0\3:>\'1:>‘2)C1%)1
t .
where Xi’ given by
A[(s) = A (t-s), i=1,2,3, 0<s<ow, (12.7)

is the history up to t of the principal stretch ratio associated with
the right principal direction of stretch u,- The functionals ;ﬁ% and
ZZS are independent of the directions of stretch, depend on Zf only

through %ﬁ , and obey the identity

ok % SR
7!1@"‘3 Vieg) = /1(07,%6 i)y I=Ns, (12.8)

* ¥ k
for all triplets of positive functions & ,B“,V on [0,®).
It follows from (7.4) that the proper vectors of U coincide
with those of C while the proper vectors of V coincide with those of B.

. t . .
Thus, to see whether the history F at a particle X has been an extension
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one need merely observe whether the proper vectors of C(t-s) = E(t-s)TE(t-s)
are independent of s at X; if they are, if the material at X is isotropic,
and if the reference configuration is undistorted, then each proper vector
of g(t) = E(t)g(t)T will be both a principal axis of refraction and a
principal axis of stress at X.

The functionals 7f; in (12.5) and (12.6) are determined by the

functionals ALI and 'tI in (11.9) and (11.10) through the relations,

. P S % K & K X *
Fr(@,B Y 5gq> = f¢1(0T,a 2B Y 5g€) = ,ZE(O*,V BLaeg), I =N,5, (12.9)

. s o

which hold for all positive functions Oﬁ, BA, Y on [0,x).

13. Shearing Motions

The history of a particle X up to time t is a shear if, for all

E(t—s) = E(t—s)%(t-s), (13.1)

where P(t-s) is orthogonal and there exists an orthonormal basis hi’

independent of s, relative to which the components of M have the form

1 0 0
[M(e-s)] = Jt(e-s) 1 of. (13.2)
0 0 1

Thus a shear is a sheared extension with

51(t-s) = Bz(t-s) = BB(t_s) = 1, (13.3)
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Clearly, for a shear, the equations (11.5) reduce to
2
E=t, ¥o= 1+t Y, = vy = 1, (13.4)

and, by (11.4), the history of X up to t is a shear if and only if, fer

some orthonormal basis Ei’ independent of s,

1 +i;(t:-s)2 € (t-s) 0
[c(e-s)] = ¢ (t-s) 1 0f; (13.5)

0 0 1

h. is, of course, the basis used in (13.2), and is called the canonical

~

basis for the shear. The parameter {(t-s) is called the amount of shear

at time t-s. The equation (13.4), (or (13.3)) implies that p(t-s) = Pg. -
When the history is known to be a shear, specification of the canonical

basis Ei’ density p, and the real-valued function Qt with
t
£7(s) = C(t-s), 0 <s <o, (13.6)

determines, by (13.5) and (9.8), both the rotated refracticn tensor E(t)
and the rotated stress tensor s(t). Indeed, the following proposition
is a direct consequence of Coleman's theorem on sheared extensions stated

in the last paragraph of Section ll.# If, relative to an undistorted

#Cf. (1968, 1] Thm. 8. Following that article, we here consider shearing
motions relative to an arbitrary undistorted reference configuration, and
the proposition we state is valid for both compressible solids and
compressible fluids. For incompressible fluids, or whenever the present
configuration is undistorted and the density is not a parameter, the
proposition yields as corollaries Coleman and Noll's reduction theorems
for steady viscometric flows [1959, 2,3] and unsteady lineal shearing

flows [1961, 1] §5, pp. 694-699.
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reference configuration with density p, the motion of an isotropic
material is a shear with canonical basis ll'i and amount of shear {(t-s),
for s > 0, then the matrices of the components, with respect to ,13,1! of

N(t) and §(t) have the forms (11.7) and (11.8) with

~s 't.

. iy (13.7)
Nii(t) = Zb"N & 50, i=1,2,3,

~ - t.

N @) .t (13.8)
118 = w7 (50, i=1,2,3,

here Yr and wél), I = N,S, are material functionals obeying the

identities

#CE50 = -7 e,
(13.9)

wDt50 = wPehe,  1=1,2.

(1)
I

s ”ti in (11.9) and (11.10) through

The material functionals ?I’ z#:"", occurring here are

determined by the functionals }I’ ,&I

the relations
wChe = HEAT? 2Tt
wM "0y - A/I<;*,J1*+ e ,17,1%50), &
w50 = A/I(c*,l*,/l—*TE*T,l*;p),

w§:3) (g*i p) = "t]:(c*: '1T+ ;*2 :11-;11.30): )

(13.10)
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where I = N,S and
/ *
1T) =1, i.e. At+t%%() = N+t¥6)? for 0<s <.

The non-singular tensor M of {(13.1) and (13.2) has the polar
decomposition

~

with Q orthogonal and U positive definite and symmetric. An elementary

calculation shows that, relative to the canonical basis Ri’

! -t /2 0

[] = —= t/2 1 0 (13.12)

Ne s L o o f+tin

and

—

1+t22 s 0

[yl —1 | en 1 0 . (13.13)

/1+ 6% /4 0 o S+t

It follows from (13.1) and (13.10) that in the polar decomposition of F
into the rotation tensor R and the right stretch temsor U, i.e. F = RU,

we have R = PQ, and U is the tensor in (13.11) and (13.13). 1In particular,
at time t,

R(r) = B(E)Q(D). (13.14)

Since Q is shown explicitly in (13.12), when P in (13.1) is specified

~

N(t) and S(t) can be calculated from ﬁ(t) and E(t), i.e. from (13.7) and

47



(13.8); for, by (9.5),
N = ROF@RMD T, 5(8) = RMOB(MERE . (13.15)
For example, when P = 1, the components of g(t) with respect to Ei are

2 ~ ~
N 2(1-—§ /4) + (Nll—-sz)g/z
Nig = Ny = 2 ’
1L+ 87/4

~ ~ ~ 2
Njpg =Ny, 0+ Ny L /4

N.. = ,
11 1+ 24
. . . (13.16)
Ny, + leg + NllC /4
Nyg = 2 ’
L+¢7/4
N33 = Ny
Nyg = Njp = Ny = N5 = 0 J

where { = {(t), and the numbers ﬁij = ﬁij(t) are given in (13.7). Of course,

similar expressions hold for the components of §(t).
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14. Homogeneous Extension

LN a. General Description

In this and the following two sections we discuss some global
motions in which optical measurements appear feasible for compressible

#

isotropic solids” and for which the history of each particle is an
extension or a sheared extension. In each case we assume that the chosen

reference configuration is undistorted.

A homogeneous extension is a motion for which there exists a

fixed Cartesian coordinate system such that, for all ¢,

X, = Kl(t)xl, X, = Az(t)xz, Xy = K3(t)X3, ki(t) >0, (14.1)
where X1s X9, Xg are the coordinates at time t of the particle which has
the coordinates Xl, XZ’ X3 in the reference configuration. It is clear
that, in such a motion, U=V =F, R =1, and each particle experiences

the same history; moreover, this history is, for each t, an extension, in
the sense of Section 12, with the right and left principal directions of
stretch parallel to the coordinate directions. Hence, by the reduction
theorem stated in Section 12, each coordinate direction is also a principal
axis of stress,gi,and a principal axis of polarization,ki. The principal
indices of refraction and principal stresses are, at each instant, the

same at each particle and are given by (12.5) and (12.6). The principal
stresses O

0., and the principal stretch ratios kl’ M., A, are

1> 920 93 27 3

accessible to measurement by mechanical means, and each principal index

i#

Some motions more appropriate to incompressible fluids are discussed in
Chapter V.
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of refraction n., i =1,2,3, may be determined if one can measure the

absolute retardation of polarized light traveling in a coordinate

direction Xj (j # i) with the axis of polarization pointing in the

direction X, - However, apparatus to simultaneously determine all of the

quantities o,, ©O,, 0,, n,, n,, 0, for arbitrary histories AL, AL AL has
12 727 737 71 727 73 12 727 73

not been devised. Even if one exploits the symmetry conditions (12.8),

it does not at present appear feasible to completely determine the

functional Z&;. Before discussing below the limited class of tests

actually attempted for solid bodies, we mention here a difficulty which

occurs in all attempts to study homogeneous extensions: General motions

2

of the form (14.1) cannot be achieved by boundary loads alone.” Of

course, every static state of homogeneous strain is a possible equilibrium

configuration, and it would be possible to achieve arbitrary histories

t t t . . . . .

Kl’ KZ’ X3 in homogeneous extension if inertia could be neglected,

Experimentors believe that inertia can be neglected for a large class

of histories called "quasistatic histories”. Whether or not a history is

"quasistatic" depends on not only the degree of precision sought but also

the size of the specimen being studied.

#See Truesdell & Noll [1965, 41 pp. 61-63. It follows, however, from a
result of Coleman & Truesdell [1965, 2], that all isochoric motions of

the form (l4.l1) can be obtained in incompressible materials through

application of appropriate tractions at the bounding surfaces.
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b. Biaxial Stress

A motion of extension with one of the principal stresses zero,

say

03(1) =0 (14.2)
for all © < t, obeys, by (12.6), the equation
T AT 7T
7/5@3:*19‘2’%) = 0 (14.3)

for T < t. Suppose now that this equation can be solved for X3 as a
. . t t . . .
function of time, when Xl and Xz are given, i.e. that there exists a

functional <« such that (14.3) implies

A1) = 2O 50), (14.4)
A
for 1 < t. When (14.4) holds, (12.5) and (12.6) yield ny, N, Ol’ 02 as
functions of the histories Xi and X;:
— t tl
nl(t) - ’éN(xlsz) Q'E); )
—_— t tl
nz(t) = »J’N(Kz;xl:pﬂ);
- F (14.5)
Ol(t) = —J‘S(A‘l)AQ;pf)}
— t t.
0, (8) = AOg M50, )

where the material functionals ,J% and ,/é are derived from Zéz and Zzg

through elimination of Xg via (14.4).
In the laboratory one attempts to achieve the condition (14.2)

by stretching, in the directions Xy, %Xy, @ thin sheet of material held
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so that the x,-axis is normal to the sheet, and o4 is negligible. The

3
stretches Xl’ XQ, Xs and the stresses 0, 0, can be measured directly.

Employing a plane polariscope mounted with its optic axis perpendicular
to the sheet, one may determine the relative retardation for polarized

light traveling in the direction x, and hence obtain the birefringence

3

1" Dy Measurement (with an interferometer) of the absolute retardation

of such light waves yields the indices of refraction nq and n, . Thus,

n

the functionals aL,.4¢

N’ and Afé can be determined for those quasistatic

. . t t . . .
histories kl’ Kz which the apparatus can impose on the specimen.

¢c. Tensile Tests
A tensile test is a homogeneous extension with
(t) = 0 (14.6)

for all 7. By (12.6), the stretches then obey the relations
T T T
%(XZ’A'].’KB’%) = 0,

%O\;; 7\.{,7\;; %) = 0,

for all 1. 1If we assume that, for each history A{, (14.7) has a solution

(14.7)

for XQ(T) and XB(T), then this solution must be such that KZ(T) = X3(T)

and, therefore, can be written in the form

T

lgef). (14.8)

A(D) = A1) = AN
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S,
|
¥

- TR

Furthermore, (12.5) and (12.6) then yield

n () = €0giny,
ny(6) = () = gy Oie), (14.9)
t|
Gl(t) = CS(Xl’%f?,

where the functionals en’ jN’ and eS are obtained from f; and 24

through elimination of X; and Xg.
Experimentors seek to obtain the condition (14.6) by applying

an axial load to the ends of a rectangular rod held so that the x_,-axis

3

is normal to one free surface and the x2-axis to another. The axis of

the rod then lies parallel to the x,-direction and the length of the rod

1

is proportional to Kl. The stretches Kl’ XZ’ K3 and the stress o, are

easily measured. The indices of refraction ny and n, can be obtained by

measuring the absolute retardation of polarized light propagating in the
x3-direction (with the amplitude vector pointing in X" and xz—directions).
Thus, the functionals en’ ;zN’ and es can be determined for quasistatic

. . t
histories A .

15. Rectilinear Sheared Extensions

The discussion of the previous section can be generalized
without great difficulty. A motion for which there exists a fixed

Cartesian coordinate system in which, at all times ¢,

Ox .

1
X = Xl(x]_:t)) Xy = Xz(xlyxz;t): x3 = X3(X3,t), axj_ >0, (15.1)
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can be called a rectilinear sheared extension. The Cartesian components

of E here have the matrix

Ox
1
== 0 0
BXl
Ox ox
[Fl = (<2 <=2 0|, (15.2)
axl ax2
Ox
3
0 0 —
| oxX 3)

and the history of each particle is, therefore, a sheared extension with
the canonical basis hi equal to the natural basis of the Cartesian system,

with P in (11.1) equal to 1, and with

or, by (11.5),

2
Ox ox ox 3x ox Ox
2 2 1 2 2 3
£ = —< =1, Y —— +| —= s Y, = x5, Y, =<5 . (15.4)
axl ax2 1 axl axl 2 ax2 3 ax3

Hence, by the reduction theorem stated in Section 11, at each particle
the components of E(t) and E(t) relative to Ei are given by the equations
(11.7)-(11.11). It is not difficult to see that, with respect to hi’
N(t) and S(t) here have matrices similar to those given for E(t) and g(t)

in (11.7) and (11.8):

Nll(t) le(t) 0
[N(e)] = N, () N, (t) 0 i (15.5)
0 0 N33(t)

#Coleman [1968, 1],pp. 471-472, has derived, for such motions, reduced forms

of the equations of motion.
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Sll(t) Slz(t) 0

[§(t)] = Slz(t) Szz(t) 0 s (15.6)
0 0 833(t)
and, furthermore,
n3(t) = N33(t) = N33(t), 03(t) = 833(t) = 533(t). (15.7)

Since the proper numbers n, of N equal the proper numbers of ﬁ, and the
proper numbers Oi of S equal the proper numbers of E, it follows from

(11.7) that

~ ~ ~ ~ 2 ~2
Znp = Npy + Ny /(Nll Nyp)™ * 4Np5 5
(15.8)
~ ~ ~ ~ 2 ~2
= - - +
2n, Ny + Ny /(Nll Nyg)  + 4Ny, s
if the proper vectors of N are labeled so that# ny > n,. The birefringence
for light propagating in the direction X, is
N ~ o~ (2 ~
ny n, = VQNll N22) + 4N12 5 (15.9)
with ﬁll’ 522’ and ﬁlZ given by (11.9). Of course, analogous expressions
hold for the principal stresses Ol and 62.

Continuing to denote the principal axes of stress and refraction

by Ei and S5 respectively, we observe that k, and s, both point in the

3 3

direction of the coordinate axis X3, while hl’ 52, 815789 all lie in a

plane parallel to the (xl,xz)-plane. When the local history does not

One does not always use this labeling.
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reduce to pure extension, there is no reason to suppose that ki =5; for

i= 1,2.# Let X be the angle 51 makes with the xl-axis. Then

2N12(t)

tan 2X(t) = O -, (15.10)

From (7.12),

N = ROV®RE T, (15.11)

and R is determined by (15.2) through the general equations (7.3), (7.4).

Hence the proper vectors 51, 52 are determined by the motion and the

material functionals in (11.9), but the resulting expressions are too
cumbersome to give here.

A sheared extension with
333(1) =0 (15.12)
for all v < t, obeys, by (15.7) and (11.10), the relation
T T AT AT
—ts(g )71:72)73JQ£) = 0 (15.13)

for 1 < t. Let us assume that (15.13) has a solution in the sense that

Y300 = e,V 550,), T < t. (15.14)

#Indeed, it can be easily shown that in the theory of linear viscoelastic
materials the principal axes of stress and refraction need not coincide
in sheared extensions. The tests of Fowlkes, reported by Dill and Fowlkes
[1966, 1] and Fowlkes [1969, 1], demonstrated a case for which the
principal axes of stress, principal directions of stretch, and the

principal axes of refraction are all distinct.
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When such is the case, (11.9) and (11.10) yield

~ _ vt b b
le(t) = fN(E' ,’yl,’yz:%))
~ _ t b o,
Nll(t) = ZN(E }yl,yzl%);
(15.15)
W) = A7 509),
Nype) = £ G570, Y50),
and
3 _ ct b Lt
Slz(t) - 1S(§ ,711721%)),
S0 = ALY Ygi0,), (15.16)
8,0(0) = 4 G5V, V5500,

where the material functionals ;gﬁ, léN’ ,f&, Z;S, 4éS are derived from
e Gy ’éN’ ¥ s through elimination of Vg.
One may attempt to generate rectilinear sheared extensions
obeying (15.12) by deforming a thin sheet held so that the sheet remains
in a plane normal to the x3—axis and no external tractions are exerted on

the sheet except at the edges where it is gripped. If the sheet is thin

enough that § is independent of x then the condition about external

3}
tractions yields

813 = 833 =835 =0,

at all values of Xy and x, away from the edges, in accord with (15.6) and
(15.12). Of course it may not be easy to insure that the motion corresponds

to a non-trivial shear superposed on a simple extension, i.e. that the

equations (15.1) hold with axz/axl # 0. Through use of appropriate grips
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and sufficiently slow loadings, one may be able to achieve, at least near
the center of the sheet, a homogeneous, rectilinear sheared extension,

i.e. a motion of the form
X, = 51(t)xl, X, = Bz(t)xz+§(t)xl, X, = 63(t)x3. (15.17)

If one rules a rectangular grid on the surface of the sheet before
deformation, study of photographs of the grid taken during a motion will
indicate whether the motion is actually of the form (15.17) in some
region and, if so, will yield the values of Cl’ Bl, BZ’ and ﬁ3. If the
sheet is viewed through a plane polariscope with its optic axis in the
x3-direction, then observation of the isoclinic lines will yield the
angle X given by (15.10) and (15.15). Indeed, when the polarizing axes
of the polariscope are so oriented that a given point is on an isoclinic
line, them X at that point equals the smallest of the angles which the

X

axis of the analyzer makes with the coordinate axes, x Study of

1’ 727
the isochromatic fringe pattern yields the birefringence given by (15.9)
and (15.15). The individual indices of refraction in (15.8) can be

obtained with an interferometer.

16. Extension, Torsion, and Inflation of a Tube

Let us now suppose that in its undistorted reference configuration
the body under consideration has the form of a hollow circular tube. We

employ a fixed cylindrical coordinate system with the z-axis along the
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common axis of the cylinders bounding the tube. The coordinates of a
particle in the reference configuration are written Z, @, R, and if, for
all t, the present coordinates z, 6, r are given by an expression of the

form
z = z(2,t), g = 8+ ¢(2,t), r = r(R,t), (16.1)

then we say that the motion of the tube is a simultaneous extension,

torsion, and inflation. 1In such a motion the body remains a circular

tube at all times. With each particle X we can associate the orthonormal

basis of unit vectors &, o> Spo pointing along the coordinate axes at

the place Z, ©, R occupied by X in the reference configuration. Clearly,

the basis 3 e

€o» &

albeit it varies from particle to particle, is

rAd R’

constant in time in each motion. An elementary calculation shows that if

the motion obeys (16.1) for all t, then at each instant the matrix of the

components of C relative to €, g0 &g is

) -

oz Z R OZ

2 2

- o) L
fcl = X 52 (R) 0o . (16.2)
2
dr

I 0 0 <BR>J

Comparing (16.2) with (11.4), we see that, in a simultaneous extension,
torsion, and inflation of a tube, the history of each particle is a

sheared extension with
2 2 2
I - (= P - _ o
E=F & 71'\/<az>+éaz ’ VZ_R’ Y3 T 3R’
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i.e. with

op oz _r _or
C=r3 Br =% By =R B3 = 3R’
and with &0 Lg» &g 2 canonical basis. Thus,. in such a motion, at

each time t, the components of ﬁ(t) and g(t), with respect to &5 L7 Sgo
are given by (11.7)-(11.10) for each particle.

Optical experiments can be done with light directed radially
through the wall of the tube. Since, however, the functions Et and YE
here depend on r, the birefringence for light traveling in the radial
direction,

AE) = ny(£) = n,(t),

also depends on r, and there is no simple relation between A(t) and the

observed relative retardation. Nevertheless, experimenters assume, with
some justification, that if the tube is sufficiently thin, the change in
the deformation gradient with radius can be neglected, and the relation
(1.2) can be employed. When such is the case, the test of a thin walled
tube in a motion of the form (16.1) provides a means of studying sheared
extension and, of course, in the absence of torsiom, an alternative to

the stretch of a thin sheet, described in Section 14b.
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V. PARTICULAR MOTIONS OF INCOMPRESSIBLE FLUIDS

17. Properties of Incompressible Materials

a. General Relations

The motions of incompressible materials are subject to the
kinematical constraint p = const., which, when the reference configuration

is sensibly chosen, reduces to
|det F| = |det ¢| = 1. (17.1)

Furthermore, the stress at a point in an incompressible material is
. . [= . . . .
determined by the history F~ only to within an arbitrary hydrostatic

pressure; that is, for such materials, the deviator Dg(t), defined by
(17.2)

, , £ , , t
is a function of F~, but §(t) is not. The local history F does
determine the refraction tensor N(t) completely, but in this section we

are more interested in the deviator Dﬁ of N:

[a R
Hh

e

1
| N - 3(tr ML (17.3)

Of course, if N(t) is a function of Et, then so also is DE(t). Thus, for

incompressible materials we have

t t
pR(E) = ME), pS(t) = SE). (17.4)
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b. Incompressible Fluids

The argument which gave us (10.2) tells us that for an

incompressible fluid the relations (17.4) can be written
N(t) = Bich) s(e) = _8(5H; (17.5)
D~ ToDp e D~ DT \RE’? )

gE is the history of the right Cauchy-Green tensor relative to the
present configuration and may be calculated as shown in (10.3)-(10.5).

The condition that the motion be isochoric implies that
|det gE(s)i = 1 for 0<s <. (17.6)

Since the functionals Dﬁ and ﬁg are isotropic, incompressible fluids obey

the following analogue of (10.8):

ot soagt = M) »Q QT and  8(6) 5QS(0)Q TN, (17.7)

Indeed, a fluid is an isotropic material with the property that every
configuration of it is undistorted. The entire theory of Chapter IV
applies to fluids, and, moreover, for a fluid one may choose the undis-
torted reference configuration 7€ to be the present configuration, i.e.
the configuration at time t, as we have done in (17.5). This choice of
reference configuration yields ﬁ(t) = N(t) and g(t) = 5(t) and results in
a simplification of the theory of Chapter IV.

We note that, for an incompressible fluid, (10.9) becomes

¢t =17 => N(t) =n°L and §(t) = -pL (17.8)
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| with n® a positive material constant and p a number to be determined by
the dynamical equations and boundary data. As a trivial consequence of

(17.8) we have

TSl

=1 = _N(©) = 8(t) =0, (17.9)

The reduced constitutive equations which describe the behavior
of incompressible fluids in shears, extensions, and sheared extensions,

are given below.

18. Isochoric Sheared Extension

Suppose that, at a particular time t at a particle X of a fluid,
there exists an orthonormal basis hi relative to which the components of

the right relative Cauchy-Green tensor gt(t-s) have the form

V%(t-s) E(t-s) 0
[g (t-s)] = [e(t-s)  Vi(t-s) 0
2
0 0 73(t—s) (18.1)
Vate-) [Yae-o)V(e-s) = £2(e=s)] = 1, v (e=s) >0

for all s > 0. When such is the case we say that the history of X up to

time t is an isochoric sheared extension with canonical basis Ei'

The arguments which yield the theorem stated in Section 11

yield also the following remark: If the history up to time t of an
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incompressible fluid is an isochoric sheared extension with canonical

basis hi’ then the matrices of the components, relative to Ei’ of N(t)

and §(t) have the forms

N (6)

[N(e)] Ny, (8)

0

A
S17 ()

[s(t)] 81, (t)

0

NZl(t) 0
sz(t) 0

0 N33(t{
8, (t) o |
822(t) 0

0] 533(t{

(18.2)

(18.3)

and there are six scalar-valued material functionals ‘}N, Ly _g% and

}S’ &g '—.éS’ such that

with

le(t) = 231

Npp(8) = Ny, (8)

Ny (£) = Nja(t)

S0 = G,
t b Lt
_ £t ot
S22(6) = 853(0) = 257,70,

£ (t-s), Vi ()
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The constitutive functionals 31, Ly Ay (I = N,S) are independent of

the basis hi’ are determined by the functionals Dﬁ and 5% in (17.5), and

obey the relations,

* K % _ * % %
| zI(g ”yZ"yl) - Z’I(g "yl"yZ)’
i K % _ * F* %
‘gi:(_g Jle‘Yz) - -_J-I(E ;'yl)yz),
fl(-é',v'l‘,v'z') = & ,77,), (18.6)
£1CELYLY) = £ G YY),
T % 5 + _* %
/:tI(O ’Vl’yz) - 'g/]:(o J'yl)’yz)J

oo

for all functions g“, VI, YZ in their domain.
Employing (18.2) to calculate the proper numbers n, of R(t), we

find that the birefringence A for light traveling in the direction E3 is

I

_ _ _ 2 2 _ t bt B2 t ot B2
npT Ry = \/(Nll Nyp)w 4Ny, ‘\A"N(g RITRCVELS SOCIFRCPROY

if the proper vectors of N are labeled such that ng > nz.# It follows

from (18.2) that the principal axes of refraction associated with ny and

n,, i.e. kl and 52, lie in the same plane as the vectors hl and EZ'
Furthermore, if we let X be the angle from El to 51, then
£t t Lt
Ny Ny Ly Y
cot 2X = oN = i (18.8)
12 2 gy (&)

i

In Sections 20 and 21 we employ a different, and somewhat more elaborate,

convention for distinguishing k. from k (See the paragraph containing

1 2"
eqs. (20.6)-(20.8).) 1In the system of labeling of those sections, it is
possible to have n, less than n,.
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19. Isochoric Extension

Suppose the motion of an incompressible fluid is such that at

X at time t there is an orthonormal basis u, relative to which

\

Ki(t—s) 0 0
G, (t-s)] = 0 A2 (t-s) o |,
0 0 )\i(t-s) (19.1)
Kl(t-s)Xz(t-s)X3(t-s) = 1, Ki(t-s) >0,

for all s > 0. In this case we say that the history of X up to t is an

isochoric extension, and we note that, for each s > 0, each vector us

(i =1,2,3) is a right principal direction of stretch for the configuration
at time t-s with the configuration at time t taken as reference.
Furthermore, the arguments which yield the theorem stated in Section 12
here tell us that, at time t, each of the basis vectors 9 is also a
principal axis of refraction ki and a principal axis of stress 53 for

each incompressible fluid there are two scalar-valued functionals 7£ﬁ and

7{2 such that
/ t \t

= (19.2)
t .t .. . .
/S(Xi’k'j)’ i,j = 1,2,3, i#]

ni(t) - nj(t)

I}

oi(t) - oj (t)

where ni(t) and Oi(t) are, respectively, the principal index of refraction

and the principal stress, at time t, associated with the axis 4, = k. =s..
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The following identities hold for all positive functions dw, Bx on [O,w):

ﬁ(a*,ﬁ*) = -ﬁcs’*,a"), I=n,s. (19.3)

Hence

%
;g;(a ,a) = 0; (19.4)

that is,

Xl(t-s) = Xz(t—s) => nl(t) = nz(t) and ol(t) = Oz(t). (19.5)

The functionals 7%& are determined by the functionals 41 and

ffl in (18.4) through the relations

PACH-

2 00,85 = £o"d N, 1=ws @96

20. Shearing Flows

A shearing flow or "generalized viscometric flow" is one for

which there exists, at each particle X and time t, an orthonormal basis
Ei’ relative to which
1+ L(t-s)>  L(t-s) O
g (e-s)] = ¢ (t-s) 1 0 (20.1)

0 0 1

for all s > 0. It follows from the results given in Section 18, that,#

#See also Coleman & Noll [1961, 11 §5; Truesdell & Noll [1965, 4] §l06.
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in a shearing flow of an incompressible fluid, the components, relative

to Ei’ of N(t) and S(t) obey the equations,

N () = D,

N () — Ny, = w{PaD,
Ny, () — N0 = 2P eh,
N13(t) = N23(t) = 0,
> (20.2)
5,(8) = 7 (65,
5,1 () = 8, (6) - wMeh,
Syp(t) = 8,4(t) = zg(z)(ﬁt);
5.5(6) = S,.(6) = 0,

. . ) (2) 1 (2)
where éyN and égé are odd functions, while E?N s ggh , f?s , and 10%

are even functions; that is, for each real-valued function t" on [0,),

% *
) ('C ) = - (C ))
_ j}{l _ {I (20.3)
tz‘,(l)(_g") = g}§l)(g"), I=N,s, i=1,2.
Furthermore, (17.9) yields
7,01 = g}gl)(o*) - gf)(o*) = o, I=N,S. (20.4)
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It is obvious that the material functionals in Section 18

determine y& and gfil) through the relations

w@ = AN ),
oM ) - 4/I<§*,/1'*—+g—*2—, 1*), : (20.5)
I ]
i

Let us index the proper vectors of N so that the counterclockwise

angle X from h, to k. satisfies the relation 0 < X < n/2. Then X is

1 1

determined by the relation

cot 2X = %_—Nﬁ, (20.6)
12
and the birefringence is given by
A = n,—n = '?/(N - N )2 + 4N2. = (N,,—N_,)cos 2X + 2N, _.sin 2X
1 2 K 11 22 12 11 22 12 )
Employing (20.2), we find that
1 t
AN
cot 2X = —
295
_ ), . t.2 ty2 L, .t ty .
A = i,\/tg"N €)™ + 4ZN(C ) 7;<__}N (£ )cos 2X + ZgN(Q )sin 2X.

It follows from (20.3) and (20.8) that A and x-% are odd functions of Et;
i.e. the transformation §t —a-Qt induces the transformations A(t) - -A(t)

and  X(t) —>§—x(t).

#Throughout this report, when we say that an angle in the (hl,gz)-plane
is measured "counterclockwise" or "clockwise", it is to be taken for

points.

granted that the plane is viewed from the side toward which k3
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We see no reason to believe that the ratio (1)(§ )/yN(g )
equals the ratio Wy )(g )/y € ) for each history § of an arbltrary
incompressible fluid., That is, in spite of occasional claims to the
contrary, there does not appear to be a general, sound, symmetry

argument indicating that the principal axes of stress 81> S, are parallel

2

to the principal axes of refraction hl’ k, in all shearing flows of all

2

incompressible fluids.

A viscometric flow# is a shearing flow for which the function

 in (20.1) has the simple form

E(t-8) = -Ks, 0<s<m, (20.9)

with K a number called the rate of shearing. Let us define six functionms,

. 1 (@) 1 (2) .
of the rate of shearing, TN ON » Oy and Tgs Og "5 Og 7 by the relations
. ) @

T () = #C ICs), oM o) = wlt ( ICs), I=NS, i=1,2. (20.10)

Here, by ( Ks) and ar( )(—Zs) we mean the valuves of the functionals
# 215 71

and ( ) at the function ¢t defined by § (s) = -ks. The functions Tr and
Oil), mapping the real numbers into the real numbers, are material

#

The definition of a "viscometric flow" employed here is that of Coleman
[1962, 1]; Truesdell & Noll [1965, 4] call such motions "steady visco-
metric flows". Coleman, Markovitz, & Noll [1966, 1] give a detailed
exposition of the theory of these flows and of modern experiments in

viscometry,
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functions, determined by the fluid under consideration. It is clear

from (20.8) that in a viscometric flow

A = AK) = ;J;ﬁl)(x)z + 4TN(K)2 ,
20.11
L Oél)(x) ( )
X = Xk) = 7 cot E?;?ET— .

As in the case of general shearing flows, there is no argument of symmetry
implying coincidence of 54 and hi’ for i =1 and 2, in viscometric flows
of arbitrary incompressible fluids.

7
The relations (20.3) and (20.4) yield##

T (R = - (0, oii)(-x) - cii)(x), (20.12)

- (L) -
1,(0) = 0, o’ (0) =0, (20.13)

for I = N,S and i = 1,2. The remark made after (20.8) here implies that

A and X-% are odd functions of k.

#The function Oél) does not equal the function o, introduced by Coleman &

1
Noll [1959, 2&3] and subsequently employed in several works, e.g.
[1961, 11 [1962, 21 [1965, 4] [1966, 1]. Our present T Gél), and Oéz)
are related as follows to the viscometric functions T, 015 and 9,

discussed in the cited references:

, M) ey = - @) ey -
T (K) = T, og (0 = 0,(K) — oK), 05 (k) = 0,(K).

##Cf. Coleman & Noll [1959, 2].
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21. Couette Flow

Of the various shearing flows that can be obtained in the
laboratory, Couette flow is the one most widely used for studying induced
birefringence. This flow lends itself readily to the determination of

the material functionals 5VN and 1?& in (20.2).

a. General Theory

In a Couette flow the velocity field has the contravariant
components,

=0, 6 = a(r,t), =0, (21.1)

in a cylindrical coordinate system r, 8, z, and the fluid is contained

between two coaxial cylinders, located at r = Rl and r = RZ’ which rotate

about their common axis (r = 0) with angular velocities Ql(t) and Qz(t).
It is easy to show that any motion obeying (21.1) is a shearing

flow with

t-s 3 ¢
E(t-s) = E/“ e w(r,t)dt = { (s), 0 <s <o, (21.2)
t

Moreover, in such a flow, for each particle X and time ¢,

h, =e, 22 = &gs h, =e, (21.3)

where & Sg0 &, is the orthonormal basis of unit vectors pointing along

e}

the coordinate directions r, 9, z, at the point occupied by X at time t.
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Thus, (20.2) here becomes the assertion that the physical components of
N(t) and §(t) in the coordinate system r, 6, z (i.e. the components of

N(t) and S(t) with respect to e &g Sz) obey the relations

: t
N g(t) = gN(C ),
).t
N_(t£) — N, (£) = [2g €,
rr CLe] 1.4
— - 2) .t
Ngg(t) =N__(t) = @ " ("),
er(t) = Nez(t) = 0,
3 t
Sr9<t) - gs(g ))
(1) .t
S__(t) =8, ,(t) = @),
rr 66 (21.5)
Sge(®) =5, (6) = wPh,
Srz(t) = Sez(t) = 0.

It follows from (21.5) that in a Couette flow of an incompressible
fluid the dynamical equations reduce to the scalar functional-differential
equation

3
pr

‘O./

o(r,t) = § [rzys(gt)] (21.6)

Q/

t r

with Qt given by (21.2). One may presume that solution of (21.6) with

appropriate initial data and the adherence conditions,

WR ,t) = & (t), @(Ry,E) = 9,(c), (21.7)

uniquely determines the angular velocity ®w as a function of r and t, but
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a general theory to this effect, valid for non-linear functionals 3@
and non-steady motions, is lacking. -

If the relative gap (Rz--Rl)/Rl is very small and Ql(t), Qz(t),
ﬁl(t), and ﬁz(t) are small for all t, one expects that ® should be such
that the rate of shear, r%% , i1s independent of r and given, to a high

degree of accuracy, by the first term on the right in the formula

R, (2, () —Q, () R,— R
o) 1272 1 v
r == o(r,t) = — + 0| =—], (21.8)
or R, = Ry Ry
which yields,
R t-s R, —R
ths) = —— f 2(rydr + o 2—1) (21.9)
R R R
2 1 1
t
with
Q = Q —Q (21.10)

Thus, when the term O((RZ—-Rl)/Rl) in (21.8) can be neglected, i.e. when
the "small gap approximation" is valid, the history Qt is independent of
r at each time t, and so also are all the terms in (21.4) and (21.5), as
well as the principal axes of refraction ki and the principal axes of
stress s..

Optical measurements on Couette flow are usually performed
with a plane polariscope mounted with its axis parallel to the axis of
the bounding cylinders. Thus the light travels perpendicular to the
planes z = const.; these planes contain the circular streamlines, two of
the axes of stress (21,32), and two of the axes of refraction (51,§2).

The observed isoclinic lines are the locus of points at which kl or 52
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is parallel to a polarizing axis of the analyzer. When (21.8) holds, 51

and kQ are independent of r, and as one sees in Figure 21.1, each isocline
is a straight radial line. Indeed, in this case, at each instant t the

isoclines form a cross (called the "cross of isocline"”) whose two branches

obey equations of the form
It 3 7t
6= -X(t), 6 =35-X({), O ==n=X(t), ©6=-X{), O0<X(t)<3, (21.11)

with @ measured counterclockwise from the direction of the polarizing

axis of the polarizer. X is called the extinction angle and may be

defined to be the clockwise angle from the axis of the polarizer to that
arm of the cross which is nearest to it. 1In view of Figure 21.1, however,
X is also the counterclockwise angle from e, to El and, by (21.3), X here
has the same meaning as in the previous section. Thus, the equations
(20.6)-(20.8) yield

1 N (8) 7 Ngp(e) 1 -1 w5

1 -
Xx() = = cot = T cot ——— . (21.12)
2 2Nr6(t) 2 ng(Ct)

If the polariscope is employed to measure the relative
retardation of polarized light passing through the fluid in the z-direction,

then the birefringence obtained is given by the formula

_ _ _ _ 2 2
A = oy n, = tJ(Nrr NGG) + 4Nr9 (21.13)

and, according to (20.6)-(20.8), or (21.4),

8 = nfD e +agyah?
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Fig.21l.1 Geometry of the Cross of Isocline
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In practice the Couette apparatus must be of finite length, and the flow
(21.1) cannot be maintained near the ends. Thus there are difficulties
in determining the length £ to be used in (1.7) for calculating A, but
since experimenters have found ways of overcoming analogous problems in

i

viscometry,” these difficulties do not appear insuperable,

Since

2N_, = A sin 2X, N _—N,, = 2N

8 rr 06 0 cot 2X,

it is evident from (21.,12) and (21.14) that when the dimensions of the
apparatus and the speeds of rotation of the bounding cylinders are such
that the "small gap approximation"” of (21.8) and (21.9) is wvalid,

it A(E)

measurement of both the extinction angle X(t) and the birefringence

for a history ot of 2, i.e.
Q(s) = Q(t-s), 0<s <o, (21.15)
permits calculation of ;yN(Ct) and nﬁ(gt) from the relations

;(N(Ct) = %A(t)sin 2X(t)
- (21.16)

w65 = 2y (tFeor 2x();

t is here given by (21.9). Thus, one can, in principle, determine the
B p) s P

functionals ;yN and ggél) experimentally.

#See, for example, the survey [1966, 1].

##Of course, intensity measurements and eq. (1.8) yield only !Al.
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b. Oscillatory Couette Flow

If w in (21.1) is such that there exists a number T > 0 for
which

w(r,t+t) = w(r,t), (D(r,t%—%) = -w(r,t), (21.17)

for all r in [Rl’RZ] and all t > -», and if 7 is the smallest positive
number for which this is the case, then we say that the Couette flow

oscillates symmetrically with period T.

It is clear from (21.2) that (21.17) yields

t

t t+T t+1/2
¢, g / = -t (21.18)

¢ =

But, in view of (21.4), (21.5), and the identities (20.3), the equations

(21.18) yield

Nre(t+'r) = Nre(t)’ Nre(t+T/2) = _NrG(t)’

Nrr(t+ T/2) — Nee(t+1/2) Nee(t) - Nrr(t), (21.19)

Nee(t+ T/2) — sz(t+ T/2) Nee(t) - sz (t),

#

and similar relations for the components of S. It follows from the

remark made after (20.8), that the equations (21.18) imply

X(£+7/2) = T = X(®), D(E+7T/2) = -D(e),
(21.20)
X(e+1) = X(t), Ac+1) = A(t).

#Vid. Coleman & Noll [1961, 1] pp. 698, 699.
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Thus, A and X are here periodic functions of time with period 7;
furthermore, in Figure 21.1, an isocline which lies on the

line a at time t will be on the line b at time t+ 7/2.

c¢. Steady Couette Flow

If (21.1) takes the form

It
o

6 = w(r), z (21.21)

with w independent of t for all t, then the motion is called a steady

Q and hence Q = &, — &

Couette flow. Of course, in such a flow, Ql’ x 1 0

must be held constant for all t.

Here the equation (21.2) reduces to

ts) = -«ks, 0<s <, (21.22)
where
kK = k(r) = r j—‘:(ﬁ ) (21.23)

Since the equation (21.22) is the same as the equation (20.9), each steady
Couette flow is a viscometric flow with a rate of shear kK that is a

function of r. It follows from (21.8) that
R R,—R
K = ———l-——sz+02—-1—> : (21.24)

Thus, in the "small gap approximation", kK is independent of r.
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with all terms independent of t.

the functions T

proportional to O

The equations (21.4) and (21.5) here become

Nr@ - TN(K)’

Nrr B NGG = oél)(x),
Nog "N, = O§2)(K)’
Nrr = NGZ =0
S, = TGk,

Srr B SQQ - Oél)(x)’
Se T 5, T oéZ)(K)’
Sr@ = S@z = 0

the forms shown in (20.11), while (21.16) reduces to

1, (0 = £ AK)sin 2((6),

Oél)(K) = ZTN(K)cot 2X (k).

(1) (1
N and oy We see no reason to expect Oy
(1) ##
g -

to be

(21.25)

(21.26)7

The equations (21.12) and (21.14) take

(21.27)

flence, if one measures both A and X as functions of K, one can calculate

Padden & DeWitt [1954, 1].
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, and g

The equations (21.26) were derived, at this level of gemerality, by
Coleman & Noll [1959, 2].

can be measured directly with apparatus of the type described by

Coleman, Markovitz, & Noll [1966, 1l describe
(1)

various methods experimenters have employed to obtain TS’ US

@)
S



It follows from the last sentence of Section 20 that

D(-K) = -A(K), X(-K) = 5= X(0). (21.28)

Thus, the transformation K — -K changes the sign of the birefringence and

results in a change in the position of an isoclinic line from a to b in
Figure 21.1. When X(k) = n/4 (i.e. if oél)(x)/TN(K) = 0)#, the cross of

isocline remains invariant under such a transformation.

#

X (k) does equal 7n/4 in the "limit of slow flow" mentioned in Section 2b.
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